
LA-UR-19-23059
Approved for public release; distribution is unlimited.

Title: LANL ARM Benchmarking Efforts

Author(s): Pritchard, Howard Porter Jr.

Intended for: EMC3 day presentation

Issued: 2019-04-04

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Slide 1UNCLASSIFIED

LANL ARM Benchmarking Efforts

Howard Pritchard (howardp@lanl.gov)
EMC3 Day 4/4/19

LA-UR-19-XXXXX

mailto:howardp@lanl.gov

Slide 2UNCLASSIFIED

Covered today

❖ Overview of LANL ARM benchmarking efforts
❖ Mini-app performance
❖ ASC/IC app performance results
❖ ARM future technologies investigations

Slide 3UNCLASSIFIED

LANL ARM Benchmark efforts

v Institutional Computing (IC) benchmarking team
- focus on open science applications

❖ HPC Applications Readiness (AR) team
- focus on ASC application porting/performance
- ARM future technologies effort

❖ Resources
- HPE Apollo 70 (TX2s 64 cores/node, 2/4 HT per core)
- Cray XC50’s (TX2s 56 cores/node, 4 HT per core)
- simulators

Slide 4UNCLASSIFIED

Microbenchmark Results

Slide 5UNCLASSIFIED

ThunderX2 comparison with Skylake,
Broadwell on Darwin

TX2 (darwin) BWL SKL-gold

cores/socket 32 (max 4 HT) 22 (2 HT) 22 (2 HT)

L1 cache/core 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way)

L2 cache/core 256KB (8-way) 256 KB (8-way) 1 MB (16-way)

L3 cache/socket 32 MB 33 MB 30.25 MB

#Memory
channels/socket

8 DDR4 4 DDR4 6 DDR4

Base clock rate 2.2 GHz 2.2 GHz 2.1 GHz

vector length 128b 256b 512b max

Pagesize 64KB on
Darwin ARM nodes

Cray ARM systems have
4KB and 2MB pagesizes

Two ARM partitions –
4tpc and 2tpc configs

Slide 6UNCLASSIFIED

Stream triad benchmark performance
comparison – per node basis

0

50

100

150

200

250

TX-128t TX-256t SKL-44t SKL-88t BWL-36t BWL-72t

G
B/

se
c

Note we’re off from reported best
stream for TX2 by ~20%.

Using 64KB pages on TX2

Slide 7UNCLASSIFIED

Stream triad benchmark performance comparison –
1 OpenMP thread (normalized to BWL)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5x
10

^3
10

^4
10

^5
10

^6
10

^7
10

^8
10

^9

TX2
SKL
SKL-novec
BWL
BWL-novec

BW
 re

la
tiv

e
to

 B
W

L

Array size (qwords)

Higher is better

Slide 8UNCLASSIFIED

Tinybenchmem benchmark performance
comparison – dual read test (random accesses)

0
10
20
30
40
50
60
70
80
90

100

64
K

12
8K

25
6K

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

MB
32

MB
64

MB

TX2
SKL
BWL

la
te

nc
y

(n
se

cs
)

block size (bytes)

Lower is better

Slide 9UNCLASSIFIED

Mini-Apps Performance
Characteristics

Slide 10UNCLASSIFIED

Objectives of the mini-app and hopefully later
full app performance investigations

❖ Get a good understanding of current performance
limitations of mini-apps on TX2 – focus on single
core+HTs and single node performance

❖ Determine extent to which mini-app kernels can
vectorize

❖ Use Skylake as comparison for scalar and vector
performance

❖ Investigate ability of compilers to generate SVE code for
performance critical loops

Slide 11UNCLASSIFIED

Mini-apps under consideration

❖ SNAP – Sn deterministic neutron transport
❖ Branson – Monte Carlo radiation transport
❖ Laghos
❖ xkt (EAP “proxy”)
❖ RSbench/Xsbench
❖ HPCG
❖ Cloverleaf (maybe tealeaf)

Slide 12UNCLASSIFIED

SNAP – Proxy for Partisn

❖ Sweep algorithm sensitive to performance of caches,
memory BW not so important (at least for realistic
problems)

❖ Option to test OpenMP performance
❖ Crossroads benchmarks
❖ Sensitive to code generation by compiler for

dim3_sweep, particularly the fix-up loop. Important for
follow-on SVE code generation studies.

❖ Cray compiler does particularly well here

Slide 13UNCLASSIFIED

SNAP

❖ Used Crossroads single node benchmark for runs –
inh0001t1 for pure MPI runs

❖ ARM Flang 18.1.4 and 19.0.0 on ARM nodes, -Ofast

❖ Intel 18.0.3 with flags in Makefile for isnap. Used
skylake-gold for comparison with TX2.

❖ Used –map-by core option for mpirun
❖ For hybrid MPI/OpenMP runs also set

OMP_PLACES=cores
OMP_PROC_BIND=close

Slide 14UNCLASSIFIED

SNAP – Comparison with Skylake-gold and Broadwell –
MPI Only – single node (normalized to BWL)

R
el

at
iv

e
Pe

rf.
 T

o
BW

L-
ve

c

MPI Processes

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 4 8 16 32 64

TX2
SKL-novec
SKL-vec
BWL-vec

Higher is better

Slide 15UNCLASSIFIED

SNAP – CRAY compiler vs ARM FLANG

0
5

10
15
20
25
30
35
40
45
50

2 4 8 16 32

Cray 8.7.5
ARM FLANG 18.4.1

G
rin

d
tim

e
(n

se
cs

)

MPI Processes

Slide 16UNCLASSIFIED

SNAP – OpenMP performance – using those
idle HTs

❖ Used Crossroads inh0001tX (X=1,2,4) single node
problem

❖ Hit turbulence with ARM compilers, ended up using
19.0.0 and using –O3 rather than –Ofast to avoid
segfaulting in inner

❖ Hit severe turbulence with Intel compilers, similar
segfault traceback but with any optimization level and
all available Intel compilers (happened both with/without
avx2/avx512 enabled)

❖ Had success with GNU 8.2.0 on Intel, at the cost of
significant loss in base performance

Slide 17UNCLASSIFIED

SNAP – OpenMP performance – using those
idle HTs (normalized to SKL-1t)

0

0.5

1

1.5

2

1 2 4 8 16 32 64

TX2-1t
TX2-2t
TX2-4t
SKL-1t
SKL-2t

Pe
rfo

rm
an

ce
 w

rt
SK

L-
1t

MPI Processes

Higher is better

Slide 18UNCLASSIFIED

SNAP – MAP profile (small 1core problem)

Slide 19UNCLASSIFIED

BRANSON – proxy for Jayenne

❖ For proxy_small.xml, appears to be compute bound
❖ RND123 not yet optimized for ARMv8
❖ Lots of time spent in math intrinsics (exp, log, sin, cos)
❖ If this is a good proxy for real app, somewhat disturbing
❖ Can compilers, using SVE vectorizer find vectors in this

code?
❖ Used proxy_small.xml for runs, NGROUPS=50
❖ Branson at db66bf52 on GitHub

Slide 20UNCLASSIFIED

BRANSON – Skylake-gold vs TX2

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 32 64

TX2-vec
TX2-novec
SKL-vec
SKL-novec

G
rin

d
tim

e
(n

se
cs

)

MPI Processes

Compilers found
no vectors!

Slide 21UNCLASSIFIED

BRANSON – Skylake-gold vs TX2 + armpl
(normalized to SKL)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64

TX2
TX2+armpl
SKL-vec

R
el

at
iv

e
pe

rf
w

rt
SK

L

MPI Processes
Normalized to SKL
32 MPI procs timing

Higher is better

Slide 22UNCLASSIFIED

ASC/IC TX2/Skylake Application
Performance Comparison

Slide 23UNCLASSIFIED

VPIC TX2/Skylake-platinum comparison – per
node basis

0
500

1000
1500
2000
2500
3000
3500
4000
4500

TX2 SKL-novec SKL-vl4 SKL-vl8 SKL-vl16

M
ai

n
cy

cl
e

tim
e(

se
cs

)

Slide 24UNCLASSIFIED

xRAGE

❖ Memory BW hungry app that makes ThunderX2 look
good

❖ Weak scaling shaped-charge problem, run on thunder,
Cray compilers 8.7.5

Slide 25UNCLASSIFIED

xRAGE shaped charge problem: TX2/KNL/HSW
performance comparison

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128 150 160

TX2
KNL
HSWtim

e(
se
cs
)

nnodes

Slide 26UNCLASSIFIED

Partisn

❖ Neutron transport code – deterministic SN method
❖ Sensitive to cache performance, not typically memory

bound
❖ Vectorizes very well for avx512, NEON

Slide 27UNCLASSIFIED

Partisn – Comparison with Skylake-gold and Broadwell
– MPI Only – single node (normalized to BWL)

R
el

at
iv

e
Pe

rf.
 T

o
BW

L-
ve

c

MPI Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32

TX2
SKL-novec
SKL-vec

Higher is better

Slide 28UNCLASSIFIED

Partisn – Compiler Comparison on Cray XC50

0

20

40

60

80

100

120

1 2 4 8 16 32

CCE 9
GNU 8.2
ARMFLANG 19.0

G
rin

d
Ti

m
e

(re
no

rm
al

iz
ed

) u
SE

C
S

Slide 29UNCLASSIFIED

GROMACS

❖ Uses explicit SIMD instructions via intrinsics. NEON is
supported

❖ Floating point bound (according to GROMACS
developers)

❖ Compilers – Intel 18.0.3 on SKL, GCC 8.2 on ARM

Slide 30UNCLASSIFIED

GROMACS: 3.3 Million Atom Problem

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

16 32 44 64

TX2-clang
SKL-intel
BWL-intel

Ex
ec

 ti
m

e(
se

cs
)

MPI Processes
Problem taken from
PRACE UEA
benchmark suite

Slide 31UNCLASSIFIED

ARM Future Technologies Effort

Slide 32UNCLASSIFIED

Scalable Vector Extension

❖ New set of SIMD instructions added to the ARMv-8-A
instruction set (Hot Chips 2016)

❖ Vector length agnostic (VLA), supports VL’s from 128 to
2048b. For portability, compilers need to generate VLA
code

❖ 32 Z registers, 16 predicate registers, 1 FFR register
(first fault register to handle faults in gather/scatter etc.)

❖ Predicate registers have unique capabilities (not your
Cray J90 bitmask registers)

❖ Fujitsu A64FX processor first with SVE – 512b VL

Slide 33UNCLASSIFIED

Exploring SVE

❖ ARM compilers can generate SVE instructions:
-march=armv8-a+sve

❖ Cray 9.0 - SVE edition compiler can also generate SVE
instructions (fixed vector length)

❖ GNU 8.2 can also generate SVE code
❖ ARMIE simulator. Available on Darwin. Will use for

Marvell/TX4 collab – they want ARMIE traces.
❖ GEM5 based simulator from ARM, pseudo-A64FX

parameter file
❖ Expect a newer simulator from Marvell soon (good for

what if experiments)

Slide 34UNCLASSIFIED

External Collaborations

❖ Sandia Astra program

❖ Riken/Sandia ARM collaboration – Fiber benchmarks,
etc.

❖ AWE (Tom Deakin, Simon McIntosh-Smith, etc.)
- simulator effort (they’re developing their own, not
GEM5)
- application performance analysis collaboration

❖ Various vendors

